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Collective oscillations in quantum rings: A broken symmetry case
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Abstract. We present calculations within density functional theory of the ground state and collective
electronic oscillations in small two-dimensional quantum rings. No spatial symmetries are imposed to the
solutions and, as in a recent contribution, a transition to a broken symmetry solution in the intrinsic
reference frame for an increasingly narrow ring is found. The oscillations are addressed by using real-time
simulation. Conspicuous effects of the broken symmetry solution on the spectra are pointed out.

PACS. 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures
and multilayers) – 78.20.Bh Theory, models and numerical simulation

1 Introduction

Quantum rings have attracted much interest in recent
years. They constitute a clear example of the great techno-
logical advances in the fabrication of electronic nanostruc-
tures, which also include a rich variety of quantum dots.
Theoretical studies of rings have addressed the appear-
ance of the so called “persistent current” as a function of
an applied magnetic field, as well as the electronic struc-
ture and optical excitations within a fully microscopic ap-
proach for small rings [1–3]. On the other hand, semiclassi-
cal methods have been applied to larger rings [4], for which
there exist experimental results in the mesoscopic domain
[5]. These semiclassical methods have indeed provided a
good description of the B-dispersion in the measured far-
infrared collective excitations for large rings. At an inter-
mediate theoretical level, microscopic density-functional
calculations have been applied to describe rings contain-
ing around N ≈ 10 electrons [6,7]. An exciting prediction
of these latter calculations is the transition for increasingly
narrow rings (approaching the quasi-1d limit) to a state
with broken rotational symmetry in the intrinsic reference
frame containing a static spin-density wave (SDW). The
fabrication of such rings, with a small number of electrons,
is a very demanding challenge that only recently has been
addressed by Lorke et al., who reported measurements of
the far infrared response of two electron rings [8,9].

All calculations of ring excitations for intermediate
sizes (N ≥ 10), using either semiclassical methods or
density-functional theory (DFT), have imposed circular
symmetry to the system and, therefore, have not been
able to signal the influence of the broken symmetry ground
state on the spectra. In this paper we relax the symmetry
condition on the ground and excited states of rings with
the purpose to explore these effects within DFT. To this
end we will use real time simulations of the collective den-
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sity oscillations developed by two of us in the context of
quantum dots [10,11]. The paper is organized as follows: in
Section 2 we consider the ring ground-state within our ap-
proach, focusing on the transition to the symmetry-broken
ground state; in Section 3 we address the real time simu-
lation of the charge and spin-density oscillations. Finally,
the conclusions are drawn in Section 4.

2 DFT description of rings

In order to model two-dimensional (2d) quantum rings
of varying widths we have used the model proposed by
Reimann et al. [6] and consider a ring confining potential
on the xy plane depending only on the radial distance r,
such as

V (ext)(r) =
1
2
ω2

0

δ
(r −R0)2 . (1)

In this expression R0 corresponds to the ring radius and
we take ω2

0 = 1/r3
sN

1/2
p , with Np and rs parameters analo-

gous to those giving for a circular quantum dot the number
of positive charges and the Wigner-Seitz radius, respec-
tively. The δ parameter is introduced in order to model
the radial thickness of the ring. As delta decreases, the
ring becomes thinner and thinner, approaching the quasi-
1d limit.

We describe the electronic structure within the local-
spin-density approximation of DFT. The reader is referred
to references [12,13] for details of the approach in the
present context. The set of single-particle (sp) orbitals
is obtained by selfconsistently solving the Kohn-Sham
(KS) equations[
−1

2
∇2 + V (ext)(r) + V (H)(r) + V (xc)

η (r)
]
ϕiη(r) =

εiηϕiη(r) , (2)
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Fig. 1. Results for a ring with N = 10 electrons, R0 = 8 and
parameters Np = 10, rs = 1.51 (see text). From left to right
the density for a ring width δ = 2, the density for δ = 0.08 and
the magnetization for δ = 0.08 are shown, respectively.

where V (H) and V
(xc)
η are respectively the Hartree and

exchange-correlation potentials. The latter one is obtained
from the local energy density as

V (xc)
η =

∂Exc(ρ,m)
∂ρη

· (3)

In these expressions η =↑, ↓ labels the spin components
while the spin densities are ρη(r) =

∑
i |ϕiη(r)|2. Total

density and spin magnetization are given by ρ = ρ↑ + ρ↓
and m = ρ↑ − ρ↓, respectively. Our exchange-correlation
functional is based on the Tanatar-Ceperley results for the
2d electron gas [14] with the von Barth-Hedin interpola-
tion for intermediate polarizations [15].

We emphasize here that our solution to equation (2) is
not assuming a priori any symmetry for the orbitals ϕ(r).
The 2d plane is discretized into a uniform grid of points
in Cartesian coordinates and the Laplacian operator is
approximated by the corresponding finite differences (we
have used typically 7 point formulas). The KS solutions
are then obtained by iteratively applying the imaginary-
time-step method. This technique is very robust although
convergence may be rather slow in some cases. The lowest
energy solution in each case is obtained by performing cal-
culations with different starting points in order to assure
that the result does not correspond to a local minimum
representing an excited state of the system.

2.1 Circular rings

Figure 1 shows the density and magnetization for a ring
with [16] R0 = 8 , containing N = 10 electrons and for two
values of the width δ. The wide one (δ = 2) has perfect
circular symmetry and its magnetization vanishes. On the
contrary, the narrow one (δ = 0.08) presents a modulation
in charge density, a charge density wave (CDW), and spin
polarization of antiferromagnetic type, with alternate ori-
entations of spin up and down (a SDW). This dramatic
change of behaviour is associated with the increase of the
radial confinement and agrees with the findings of refer-
ence [6]. We compare in Figure 2 the energy of the unre-
stricted solution to equation (2) with that obtained with
the contraint of circular symmetry, i.e., by solving only
the radial KS equation as in reference [7]. Also shown in
Figure 2 is the ratio of maximum magnetization to maxi-
mum density and the amplitude of the CDW. Panels (b)
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Fig. 2. Evolution with δ of several properties for the same
ring of Figure 1. Panel (a) shows (Ec − E)/E in percentage,
where Ec is the energy of the circularly contrained solution
while E is that of the full solution to equation (2). Panel (b)
shows the evolution of the ratio of maximum magnetization
over maximum density. Panel (c) displays the amplitude of the
charge-density wave and panel (d) shows the evolution of the
energy level scheme referred to the lowest sp orbital. In this
latter panel, occupied levels are plotted with solid lines while
the first unoccupied one is shown with a dashed line

and (c) show that the transition is rather abrupt with the
value of δ, although the energy (panel (a)) is smoothly
changing. Nevertheless, the energy trend is very clear and
manifests the gain in binding energy with the formation
of CDW’s and SDW’s.

Although some controversy has existed in the quan-
tum dot community [12,17,18], the formation of broken-
symmetry solutions as those displayed by mean-field the-
ories is a well-known phenomenon in nuclear physics [19]
and in atomic physics [20]. It has been recently discussed
in the context of 2d quantum dots by Yannouleas and
Landman [18] and by Koskinen et al. [12,21]. It has been
shown that the mean field solution corresponds to the
intrinsic structure of the system although the full exact
solution in the laboratory frame preserves the symmetry
because of an underlying degeneracy. This is convincingly
shown by comparing internal structure properties of the
exact solution, such as the conditional pair probability,
with the mean field result [18]. Another strong evidence
of the internal symmetry breaking is given by the compar-
ison of the low lying states with the roto-vibrational states
of the structure formed by the localized electrons [18,21].
Quantum rings constitute indeed a very good scenario for
this behaviour since, as shown in Figures 1 and 2, they
exhibit strong breaking of the circular symmetry. A crit-
ical comparison of the mean field solution with the exact
one for two-electron quantum rings will be presented in a
future publication.
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Fig. 3. Density and magnetization for elliptic rings with
10 electrons and δ = 2. For β = 0.75 only the density is
shown, since the magnetization vanishes, while for β = 0.5 both
density and magnetization are displayed.

The broken-symmetry solution is accompanied by a
strong change in the sp level scheme. While the circular
structure is characterized by shells, with closings at elec-
tron numbers of 2, 6, 10, 14 and a small sensitivity on the
width δ, the formation of SDW’s and CDW’s leads to a
bunching of the occupied levels and the formation of a rel-
atively large energy gap at the Fermi level. This behaviour
is shown in Figure 2d.

2.2 Elliptic rings

Deformed rings can be simulated by using an elliptic con-
tour for R0(θ) of the type

R0(θ) = a

(
cos2 θ +

1
β2

sin2 θ

)− 1
2

, (4)

where a is the major axis of the ellipse, β gives the ra-
tio of minor to major axis and θ is the polar angle. In
order to compare with the circular rings of the preced-
ing subsection we have taken elliptic rings with the same
perimeter and have considered two deformations, namely
β = 0.75 and β = 0.5, corresponding to medium and large
ring deformation, respectively.

One of the most striking findings in elliptic rings is
the appearance of the broken-symmetry solution along the
ring contour for increasing deformation, at fixed width.
This happens even for wide rings although the wave struc-
ture is more clearly marked in the narrow ones (Fig. 3).
Another behaviour which is apparent in Figure 3 is the
formation of charge concentrations at the ends of the long
axis. These are attributed to end states similar to those
found in finite wires [6]. In broad rings, the formation of
end states appears abruptly after a minimum deformation
is reached. For instance, at δ = 2 and β = 0.75 no evidence
is yet found of their formation.

3 Time dependent spin and charge density
oscillations

The analysis of excited states is often made by invok-
ing perturbation theory for an external probing field. The

feasibility of this approach usually relies on the symme-
tries of the system, which greatly simplify the treatment.
For instance, in circular dots one can take density oscilla-
tions of the type δρη(r)eimθ , i.e., a radial function times a
multipolar field, and then reduce the equations to the ra-
dial parts. In the present context the possibility of having
a broken symmetry ground state forbids this approach.

A suitable alternative to perturbation theory is to
study the density oscillations by using real-time simu-
lations. This is particularly well-adapted to DFT and
leads to its time-dependent generalization (TDDFT). The
simplest version of this scheme is the adiabatic-local-
density approximation, which uses the energy functional
of the ground state to explore small amplitude oscillations
around it. This is one of the simplest versions of TDDFT
and yet it is quite robust and satisfies known exact prop-
erties as the energy weighted sum rule and the generalized
harmonic-potential theorem [22,23]. We will use it to cal-
culate the ring spin-density oscillations.

The time-dependent Schrödinger equations can be
written

i
∂

∂t
ϕiη(r, t) = hη [ρ,m]ϕiη(r, t) , (5)

where the KS single-particle Hamiltonian hη [ρ,m] is given
by the square bracket in equation (2), whose stationary
solution was found in the preceding Section. Here we will
perform an initial (at t = 0) perturbation of the wave
functions

ϕiη(r, 0) = Pϕiη(r) , (6)

and track the time evolution through equation (5). Tech-
nical details of the integration method, as well as of the
analysis of the dipole signals 〈r〉η which allow to extract
the excitation spectrum can be found in references [10,11].

We will distinguish three different types of excitation
modes, two of them depending on the initial perturbation
P and another one corresponding to a theoretical model
in which the electrons are not interacting. Namely: den-
sity modes associated with an initial rigid displacement of
the total density; spin modes for which at t = 0 the spin
densities are rigidly shifted in opposite directions; and free
modes for which the sp Hamiltonian is kept fixed to the
stationary densities, i.e., hη [ρ,m] ≈ hη [ρ0,m0]. The free
oscillations, also known as sp modes, are equally excited
by shifting either the total density or the spin densities.

3.1 Circular rings

Figure 4 shows the free, density and spin spectra for the
broad ring with N = 10 and δ = 2. As known from other
calculations [4,7] the spectrum is roughly divided in two
regions in the sp model which are then shifted by the inter-
action in the density and spin channels. The lower region
contains a single peak while the higher one exhibits an
important fragmentation. The density response is char-
acterized by the blue shift from the sp peaks while the
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Fig. 4. Dipole oscillation spectra in the free, density and spin
channels for the circular ring with N = 10 and δ = 2. The
left panels correspond to the unrestricted solution while the
right panels show the circularly constrained one. The arrow
shows the value ω0/

√
δ, that gives the curvature of the radial

parabola at the minimum.

spin response exhibits a shift to lower energy. The resid-
ual interaction is also quite effective in enhancing one peak
above the others in the high energy region. The peak that
collects the strength is then associated to the more collec-
tive excitation. These features can be considered standard
in finite Fermi systems with a repulsive interaction in the
density channel and an attractive one for the spin channel.
Indeed, a similar behaviour has been found in quantum
dots. Figure 4 also shows the corresponding spectra ob-
tained by using the circularly constrained solution in the
perturbative random-phase approximation (RPA) [7]. It
is obvious that both results are equivalent, as one would
expect since the ground state has circular symmetry. We
attribute the minor differences to the quite different tech-
niques that have been used in the two cases. It is worth to
notice that the real time method is much more demanding
computationally and that very fine details of the spectrum
are harder to describe, such as very low intensity peaks,
or the resolution of two closely lying excitations.

The results for the narrow ring (δ = 0.08) are shown
in Figure 5. Qualitative differences appear with respect
to the preceding ring and, most important, with respect
to the circularly constrained solution. They must be at-
tributed to the symmetry breaking ground state of this
ring. The separation of high and low energy region is now
clearer, with an important gap between both. The most
striking result comes from the comparison of the low en-
ergy peaks with the circularly contrained solution. First
we notice that the full solution in this energy region yields
a density response which is very close to, but just below,
the sp peaks and overlaps with some excitations of the
spin response. In the circularly contrained calculation the
density response is above the sp one and, furthermore,

ω
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spin spin

ω
Fig. 5. Same as Figure 4 but for δ = 0.08.

the spin peak lies at an essentially vanishing energy. The
different behaviour is indicating that the symmetry break-
ing is giving stability to the ring, which would otherwise
become unstable against spin oscillations. This is in agree-
ment with the appearance of an energy gap in the sp en-
ergies associated to the symmetry breaking, mentioned in
Section 2.

The high energy region is associated to a locally radial
oscillation in the ring, and thus similar to the oscillation
in a one dimensional oscillator. This is confirmed by the
similarity of the energy with the radial curvature at the
minimum given by ω0/

√
δ that, by the well-known gen-

eralized Kohn’s theorem, is the only allowed energy for
rigid density oscillations of dipole type in parabolic con-
finement [24]. On the other hand, the low energy region is
associated with oscillations locally tangential to the ring.
Within this interpretation, the fact that the density and
spin tangential modes are close in energy and essentially
overlap with the sp excitations can be understood as a sig-
nature of a 1-dimensional Luttinger liquid [25], for which
the lowest excitations are not the sp but the collective
ones.

In the symmetry broken ground state there is also a
possibility to excite pure tangential modes by means of
a twist of the two spin densities in opposite directions.
These exotic modes were proposed recently in the context
of quantum dots [10]. It is obvious that pure tangential
modes can not exist in circularly symmetric rings since a
twist of spin densities does not change the energy. How-
ever, in a symmetry broken state a restoring force appears
because of the distortion of the spin-density wave. The as-
sociated oscillation energy is easily obtained by analyzing
the time dependence of the orbital currents 〈

∑
i `

(z)
i σ

(z)
i 〉

that appear after an initial spin twist.
Figure 6 shows the spin twist spectrum for the narrow

ring with 10 electrons. We observe that the peaks are in
the same region as the low energy dipole excitations, which
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Fig. 6. Spin twist spectra for the narrow circular ring in the
free and interacting channels.
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Fig. 7. Same as Figure 4 for a deformed ring with β = 0.5.
Left panels correspond to δ = 2 and right ones to δ = 0.08.

is proving that the latter ones are indeed of tangential
nature. Both free and interacting spectra are characterized
by a rather regular energy spacing, after an initial gap. We
attribute this to the parabolicity of the potential in the
tangential direction for points close to the local minima.

3.2 Elliptic rings

The systematics with deformation is very similar to that
discussed for the circular case, with the additional result
that both dipole energy regions are now more fragmented.
Figure 7 shows the corresponding spectra for a strongly
deformed ring β = 0.5 with thicknesses given by δ = 2
and δ = 0.08. This fragmentation is more regular in the
wide rings, with a doubling of high and low energy peaks
by the same energy separation. In the narrow ring the
relative fragmentation is lower with respect to the separa-

tion of high and low energy regions which is in agreement
with the previously mentioned transverse and longitudinal
character of both regions.

4 Conclusions

The ground state and oscillations of quantum rings have
been discussed within density-functional theory relaxing
the constraint of circular symmetry of the electronic den-
sity. A transition to a broken symmetry ground state with
static charge and spin density waves has been found for
increasingly narrow rings, in agreement with previous re-
sults. The energy gain with respect to the circularly con-
traint sp level scheme have been discussed as a function of
ring width. The transition to a wave structure along the
ring contour has also been obtained in elliptic rings for
increasing deformations. In this case, there also appear
charge concentrations at the long axis ends indicating the
formation of end states similar to those obtained in finite
quantum wires.

Signatures of the broken symmetry ground state on the
collective oscillation energies have been searched for in the
dipole spin and density oscillations. We have shown that
the broken symmetry is accompanied by an overlap of the
density and spin response peaks in the low energy region
corresponding to tangential oscillations. At the same time,
the low lying sp excitations are at a slightly higher energy,
which is indicating a quasi 1d behaviour similar to that of
Luttinger liquids. The energy of these excitations is close
to the gap associated to the broken symmetry. It has also
been shown that the broken symmetry gives stability to
the ring, which would otherwise become unstable against
spin dipole oscillations. The oscillations in the radial di-
rection are located at higher energy, close to the radial
curvature of the parabola as indicated by the generalized
Kohn’s theorem. The separation between high and low
energy regions increases as the ring width decreases.

Pure tangential modes in rings with broken symmetry,
associated to a twist of the spin densities have been dis-
cussed and it has been shown that their energy is close
to the low dipole peaks. This supports the interpretation
of this dipole excitations. Besides, we have shown that
the more exotic spin-twist modes are regularly spaced in
energy because of a high degree of harmonicity of the po-
tential. Finally, the dipole oscillations in elliptic rings have
been obtained and their fragmentation depending of the
ring width has been shown.

Further work is necessary in order to analyze in detail
the convergence to the strict 1d limit, for very narrow
rings, and how the peculiarities of a Luttinger liquid such
as power-law (as opposite to long range) order in the SDW
correlation function and spin-charge separation [25] may
manifest in a finite size system.

M.V.-R. gratefully acknowledges support by the Consell
de Mallorca-UIB. This work was performed under grant
No. PB98-0124.
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